Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jie Li, Chun-Bao Li* and Qi-Yun Shao

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
lichunbaosyn@sohu.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.143$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5-Diphenylpentanenitrile

This paper reports a new synthesis of the title compound, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}$, and its crystal structure. In the molecule, the two phenyl rings are approximately parallel. The cyano group is almost perpendicular to the two phenyl rings.

Comment

Freerksen et al. (1983) repeated the Watt procedure (Watt, 1974), obtaining the title compound, (I), in 56% yield. Masuko et al. (1985) synthesized (I) in 94% yield, starting from benzyl nitrile and phenylpropyl chloride. Similarly, Hino et al. (1988) prepared the compound using benzyl nitrile and 3-bromopropylbenzene. In these syntheses, expensive starting materials were used. We report our synthesis of this compound via a Friedel-Crafts reaction. The starting material, 5-chloro-2phenylvaleronitrile was synthesized by reaction of benzyl nitrile and 1-bromo-3-chloropropane in the presence of NaOH and the phase-transfer catalyst benzyltrimethylammonium bromide. (I) was produced in 90% yield by refluxing a mixture of benzene, AlCl_{3} and 5-chloro-2-phenylvaleronitrile.

(I)

The molecular structure is illustrated in Fig. 1. The two phenyl rings are approximately parallel, forming a dihedral angle of $7.9(5)^{\circ}$. The angle $\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 1$ is $178.6(2)^{\circ}$, indicating that atom C 5 is $s p$ hybridized. The angles between $\mathrm{N} 1-$ $\mathrm{C} 5-\mathrm{C} 1$ and the two phenyl rings are 86.9 (5) and $92.7(5)^{\circ}$, respectively, indicating that the cyano group is perpendicular

Figure 1
View of the molecular structure of (I), with 30% probability ellipsoids.
to the phenyl ring planes. Atoms, $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 4 are almost coplanar. The $\mathrm{C} 5-\mathrm{N} 1$ distance is 1.137 (3) \AA, similar to the $\mathrm{C}-\mathrm{N}$ bond length 1.134 (2) \AA in bis(2-methylbenzyl cyanide) tetracyanobenzene (Hosomi et al., 1997).

Experimental

5-Chloro-2-phenylvaleronitrile $(4.3 \mathrm{~g}, 22.3 \mathrm{mmol})$ and benzene (20.0 ml) were heated in a 50 ml round-bottom flask, catalysed by $\mathrm{AlCl}_{3}(4.0 \mathrm{~g}, 29.9 \mathrm{mmol})$. The reaction mixture was refluxed for 6 h , then poured into iced water and acidified with dilute HCl . The organic layer was separated and washed with water, dried and concentrated. Evaporation of the solvent and crystallization of the residue from toluene yielded (I), $4.733 \mathrm{~g}, 90 \%$, m.p. $351-353 \mathrm{~K}$ (literature m.p. 349-351 K). Crystals were obtained by slow evaporation of a toluene solution. IR (KBr) $2235(\mathrm{~ms}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{CDCl}_{3}\right) \delta 3.75-3.78(1 \mathrm{H}, \mathrm{m}), 7.13-7.38(10 \mathrm{H}, \mathrm{m})$ p.p.m.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}$	Mo $K \alpha$ radiation
$M_{r}=235.32$	Cell parameters from 897 Orthorhombic, Pbca $a=8.356(3) \AA$ $b=17.406(5) \AA$
$c=19.052(6) \AA$	$\theta=2.6-22.7^{\circ}$
$V=2771.0(15) \AA^{3}$	$\mu=0.07 \mathrm{~mm}^{-1}$
$Z=8$	$T=293(2) \mathrm{K}$
$D_{x}=1.128 \mathrm{Mg} \mathrm{m}^{-3}$	Block, colorless
	$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	1751 reflections with $I>2 \sigma(I)$
\quad diffractometer	$R_{\text {int }}=0.065$
φ and ω scans	$\theta_{\text {max }}=26.4^{\circ}$
Absorption correction: none	$h=-6 \rightarrow 10$
14985 measured reflections	$k=-21 \rightarrow 21$
2843 independent reflections	$l=-23 \rightarrow 23$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0511 P)^{2}\right. \\
+0.5892 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}
\end{gathered}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$S=1.04$
2843 reflections
163 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 5$	$1.472(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.544(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.519(2)$		
			$119.22(15)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 6$	$111.74(15)$	$\mathrm{C} 11-\mathrm{C} 6-\mathrm{C} 1$	$120.62(18)$
$\mathrm{C} 12-\mathrm{C} 4-\mathrm{C} 3$	$112.25(15)$	$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 4$	$121.70(18)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 1$	$122.37(16)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 4$	
			$78.3(2)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-61.9(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 12-\mathrm{C} 17$	$-99.5(2)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-31.9(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 12-\mathrm{C} 13$	

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Freerksen, R. W., Selikson, S. J. \& Wroble, R. R. (1983). J. Org. Chem. 48, 4087-4096.
Hino, K., Nagai, Y. \& Uno, H. (1988). Chem. Pharm. Bull. 36, 2386-2400.
Hosomi, H., Ohba, S., Ito, Y. \& Nakabayashi, H. (1997). Acta Cryst. C53, IUC9700031.
Masuko, F., Ohita, Katsura, T. \& Itami (1985). US Patent NO. 4536599.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Watt, D. S. (1974). Tetrahedron Lett. p. 707-710.

